Dissection of the region of Pseudomonas aeruginosa ParA that is important for dimerization and interactions with its partner ParB
نویسندگان
چکیده
Pseudomonas aeruginosa ParA belongs to a large subfamily of Walker-type ATPases acting as partitioning proteins in bacteria. ParA has the ability to both self-associate and interact with its partner ParB. Analysis of the deletion mutants defined the part of the protein involved in dimerization and interactions with ParB. Here, a set of ParA alanine substitution mutants in the region between E67 and L85 was created and analysed in vivo and in vitro. All mutants impaired in dimerization (substitutions at positions M74, H79, Y82 and L84) were also defective in interactions with ParB, suggesting that ParA-ParB interactions depend on the ability of ParA to dimerize. Mutants with alanine substitutions at positions E67, C68, L70, E72, F76, Q83 and L85 were not impaired in dimerization, but were defective in interactions with ParB. The dimerization interface partly overlapped the pseudo-hairpin, involved in interactions with ParB. ParA mutant derivatives tested in vitro showed no defects in ATPase activity. Two parA alleles (parA84, whose product can neither self-interact nor interact with ParB, and parA67, whose product is impaired in interactions with ParB, but not in dimerization) were introduced into the P. aeruginosa chromosome by homologous gene exchange. Both mutants showed defective separation of ParB foci, but to different extents. Only PAO1161 parA84 was visibly impaired in terms of chromosome segregation, growth rate and motility, similar to a parA-null mutant.
منابع مشابه
ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth.
The par genes of Pseudomonas aeruginosa have been studied to increase the understanding of their mechanism of action and role in the bacterial cell. Key properties of the ParB protein have been identified and are associated with different parts of the protein. The ParB- ParB interaction domain was mapped in vivo and in vitro to the C-terminal 56 amino acids (aa); 7 aa at the C terminus play an ...
متن کاملIdentification of C-terminal hydrophobic residues important for dimerization and all known functions of ParB of Pseudomonas aeruginosa
The ParB protein of Pseudomonas aeruginosa is important for growth, cell division, nucleoid segregation and different types of motility. To further understand its function we have demonstrated a vital role of the hydrophobic residues in the C terminus of ParB(P.a.). By in silico modelling of the C-terminal domain (amino acids 242-290) the hydrophobic residues L282, V285 and I289 (but not L286) ...
متن کاملParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters
Deletions leading to complete or partial removal of ParB were introduced into the Pseudomonas aeruginosa chromosome. Fluorescence microscopy of fixed cells showed that ParB mutants lacking the C-terminal domain or HTH motif formed multiple, less intense foci scattered irregularly, in contrast to the one to four ParB foci per cell symmetrically distributed in wild-type P. aeruginosa. All parB mu...
متن کاملBinding and spreading of ParB on DNA determine its biological function in Pseudomonas aeruginosa.
ParB protein of Pseudomonas aeruginosa belongs to a widely represented ParB family of chromosomally and plasmid-encoded partitioning type IA proteins. Ten putative parS sites are dispersed in the P. aeruginosa chromosome, with eight of them localizing in the oriC domain. After binding to parS, ParB spreads on the DNA, causing transcriptional silencing of nearby genes (A. A. Bartosik et al., J. ...
متن کاملTranscriptional Profiling of ParA and ParB Mutants in Actively Dividing Cells of an Opportunistic Human Pathogen Pseudomonas aeruginosa
Accurate chromosome segregation to progeny cells is a fundamental process ensuring proper inheritance of genetic material. In bacteria with simple cell cycle, chromosome segregation follows replication initiation since duplicated oriC domains start segregating to opposite halves of the cell soon after they are made. ParA and ParB proteins together with specific DNA sequences are parts of the se...
متن کامل